Probing stratospheric transport and chemistry with new balloon and aircraft observations of the meridional and vertical N2O isotope distribution
نویسنده
چکیده
A comprehensive set of stratospheric balloon and aircraft samples was analyzed for the position-dependent isotopic composition of nitrous oxide (N2O). Results for a total of 220 samples from between 1987 and 2003 are presented, nearly tripling the number of mass-spectrometric N2O isotope measurements in the stratosphere published to date. Cryogenic balloon samples were obtained at polar (Kiruna/Sweden, 68 N), mid-latitude (southern France, 44 N) and tropical sites (Hyderabad/India, 18 N). Aircraft samples were collected with a newly-developed whole air sampler on board of the high-altitude aircraft M55 Geophysica during the EUPLEX 2003 campaign. For mixing ratios above 200 nmol mol−1, relative isotope enrichments (δ values) and mixing ratios display a compact relationship, which is nearly independent of latitude and season and which can be explained equally well by Rayleigh fractionation or mixing. However, for mixing ratios below 200 nmol mol−1 this compact relationship gives way to meridional, seasonal and interannual variations. A comparison to a previously published mid-latitude balloon profile even shows large zonal variations, justifying the use of three-dimensional (3-D) models for further data interpretation. In general, the magnitude of the apparent fractionation constants (i.e., apparent isotope effects) increases continuously with altitude and decreases from the equator to the North Pole. Only the latter observation can be understood qualitatively by the interplay between the time-scales of N2O photochemistry and transport in a Rayleigh fractionation framework. Deviations from Rayleigh fractionation behavior also occur where polar vortex air mixes with nearly N2O-free upper stratospheric/mesospheric air (e.g., during the boreal winters of 2003 and possibly 1992). Aircraft observations Correspondence to: J. Kaiser ([email protected]) in the polar vortex at mixing ratios below 200 nmol mol−1 deviate from isotope variations expected for both Rayleigh fractionation and two-end-member mixing, but could be explained by continuous weak mixing between intravortex and extravortex air (Plumb et al., 2000). However, it appears that none of the simple approaches described here can capture all features of the stratospheric N2O isotope distribution, again justifying the use of 3-D models. Finally, correlations between 18O/16O and average 15N/14N isotope ratios or between the position-dependent 15N/14N isotope ratios show that photo-oxidation makes a large contribution to the total N2O sink in the lower stratosphere (possibly up to 100% for N2O mixing ratios above 300 nmol mol−1). Towards higher altitudes, the temperature dependence of these isotope correlations becomes visible in the stratospheric observations.
منابع مشابه
Measurements of NO, NOy, N2O, and O3 during SPURT: implications for transport and chemistry in the lowermost stratosphere
We present measurements of NO, NOy, O3, and N2O within the lowermost stratosphere (LMS) over Europe obtained during the SPURT project. The measurements cover all seasons between November 2001 and July 2003. They span a broad band of latitudes from 30 N to 75 N and a potential temperature range from 290 to 380 K. The measurements represent a comprehensive data set of these tracers and reveal atm...
متن کاملStratospheric tracer modeling key aspects
This study describes key aspects of global chemistry-transport models and the impact on stratospheric tracer transport. We concentrate on global models that use assimilated winds from numerical weather predictions, but the results also apply to tracer transport in general circulation models. We examined grid resolution, numerical diffu-5 sion and dispersion of the winds fields, the meteorology ...
متن کاملTrends and seasonal cycles in the isotopic composition of nitrous oxide since 1940
The atmospheric nitrous oxide mixing ratio has increased by 20% since 1750 (ref. 1). Given that nitrous oxide is both a long-lived greenhouse gas2 and a stratospheric ozonedepleting substance3, this increase is of global concern. However, the magnitude and geographic distribution of nitrous oxide sources, and how they have changed over time, is uncertain4,5. A key unknown is the influence of th...
متن کاملUsing stable isotopes to follow excreta N dynamics and N2O emissions in animal production systems.
Nitrous oxide (N2O) is a potent greenhouse gas and the dominant anthropogenic stratospheric ozone-depleting emission. The tropospheric concentration of N2O continues to increase, with animal production systems constituting the largest anthropogenic source. Stable isotopes of nitrogen (N) provide tools for constraining emission sources and, following the temporal dynamics of N2O, providing addit...
متن کاملSimulation of atmospheric N2O with GEOS-Chem and its adjoint: evaluation of observational constraints
We describe a new 4D-Var inversion framework for nitrous oxide (N2O) based on the GEOS-Chem chemical transport model and its adjoint, and apply it in a series of observing system simulation experiments to assess how well N2O sources and sinks can be constrained by the current global observing network. The employed measurement ensemble includes approximately weekly and quasicontinuous N2O measur...
متن کامل